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Abstract
Using the theory of induced representations two exactly solvable models of
non-relativistic scattering with SL(2,C) symmetry are presented. The first
describes the scattering of a charged particle moving on the Poincaré upper
half space H under the influence of an SU(2) non-Abelian gauge potential
with isospin s. The second deals with a one-dimensional coupled-channel
scattering problem for a charged particle in a matrix-valued scalar potential
containing Morse-like interaction terms. The coupled channel wavefunctions
and the corresponding scattering matrices are calculated. A detailed description
of the underlying geometric structures is also given and a generalization for
restricting the motion to fundamental domains of H (three manifolds of constant
negative sectional curvature) is outlined. Such models provide an interesting
generalization to the known ones of multichannel scattering, quantum chaos
and chaotic cosmology.

PACS numbers: 03.65.−w, 03.65.Nk

1. Introduction

Exactly solvable models of quantum-mechanical scattering related to an underlying non-
compact symmetry group G generated considerable interest in the past few decades. The
advent of algebraic scattering theory (AST) [1] revealed that group theoretical methods can be
extended successfully from the investigation of bound state problems to the scattering region
as well. Group theoretical methods (using both discrete and continuous symmetry groups)
facilitate explicit construction of scattering wavefunctions, and the corresponding scattering
matrices as needed for model building in nuclear physics [2], molecular and atomic physics
[3] and in the description of quantum chaos [4, 5].

The simplest and best studied examples were based on the symmetry groups SO(2, 1) and
SO(3, 1), the proper orthochronous Lorentz groups, or their covering groups SL(2,R) and
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SL(2,C). The corresponding Lorentz groups are related to the dynamical symmetry group of
the non-relativistic Coulomb problem in two and three dimensions [6], and to a class of exactly
solvable scattering problems with Pöschl–Teller and Morse potentials. The corresponding
covering groups were used first in the investigations of quantum chaos. The Poincaré upper
half-plane model with an SL(2,R) symmetry restricted to a suitable fundamental domain
has been studied with [5] and without [4] inclusion of a constant magnetic field and with
Aharonov–Bohm fluxes [7]. That is now the archetypal example of chaotic quantum scattering
in multiply connected spaces. The inclusion of Aharonov–Bohm fluxes to such models is also
a useful concept for the models of persistent currents in mesoscopic systems in solid-state
physics [8]. As far as the author knows, models describing scattering situations with SL(2,C)
symmetry using the Poincaré upper half space H have received little attention to date. Models
with SL(2,C) symmetry suitably restricted to fundamental domains of H so far have been used
only in connection with bound state problems. In this respect, note that in [12] and [13], the
possible occurrence of quantum chaos in Robertson–Walker cosmologies has been considered.

The aim of this study is then to display an interesting class of exactly solvable models
with SL(2,C) symmetry that describe physically interesting scattering problems. Two model
systems are considered. The first describes the quantum-mechanical scattering of a charged
particle moving on the Poincaré upper half space H under the influence of an SU(2) non-
Abelian gauge potential with the isospin s. This model is the natural generalization of
the corresponding motion on the upper half plane under the influence of an Abelian U(1)
gauge field producing a constant magnetic field as studied by Comtet et al [5, 9, 10].
The second deals with a one-dimensional coupled-channel scattering problem for a charged
particle in a matrix-valued scalar potential containing Morse-like interaction terms. Since the
seminal work of Morse [11], it is well known that the bound states of (single channel) Morse-
like interaction terms are useful for treating the vibrational motion of a diatomic molecule.
As far as the scattering states are concerned a systematic study based on an underlying
symmetry algebra has not appeared yet. Our second model is an example of that kind. It is
an analytically solvable multichannel scattering problem with SL(2,C) symmetry. For these
problems the coupled channel wavefunctions and the corresponding scattering matrices can
be explicitly calculated. Moreover, by using suitable discrete subgroups � of SL(2,C), a
large class of solvable models describing scattering problems on three manifolds of the form
SL(2,C)/� can be identified as well. These models are the higher dimensional analogues
of those describing chaotic scattering under the influence of a ‘constant’ non-Abelian SU(2)
gauge field. Such models provide an interesting generalization to what is used currently in the
studies of quantum chaos and chaotic cosmology.

The organization of this paper is as follows. In section 2, I present the matrix-valued
SL(2,C) realization and clarify the associated underlying geometrical structures. In section 3,
the corresponding Casimir operators are specified and their relationships to the non-relativistic
Hamiltonians defining solvable scattering problems are established. Next, in section 4, a
convenient ansatz for the separation of variables is defined and the group theoretical meaning
of the ensuing coupled channel wavefunction is clarified. To gain insight for the matrix-
valued radial problem for an arbitrary isospin s, the spin- 1

2 and spin-1 cases are worked
through explicitly in section 5 while the solution of the radial problem for the general isospin
s is given in section 6. The explicit forms of the scattering matrix and of the coupled channel
wavefunction are given therein. Following, in section 7, I outline a method for generalizing
the models for three manifolds of the form SL(2,C)/�. Finally, in section 8, I make some
observations on the possible use of these notions in the context of algebraic scattering theory,
of quantum chaos and of chaotic cosmology along with conclusions from this work. Some
calculation details can be found in the three appendices.
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2. An SL(2, C) realization

Let the upper half space H be the set

H ≡ {(x, y, t) ∈ R × R × R+} = {(z, t)|x + iy ∈ C, t ∈ R, t > 0} (1)

and it will also be useful to use the notation xµ,µ = 1, 2, 3, for the coordinates (x, y, t), i.e.
(x, y, t) ≡ (x1, x2, x3). This H can be identified [14] with the coset SL(2,C)/SU(2). Due
to this identification there is a natural action of SL(2,C) on H. As is well known there is a
hyperbolic metric on H, the Poincaré metric, defined by the line element

ds2 = dx2 + dy2 + dt2

t2
= (dx1)2 + (dx2)2 + (dx3)2

(x3)2
= gµν(x) dxµ dxν. (2)

SL(2,C) acts on H as an isometry of this metric with the following set of six Killing vectors:

G1 = −i
(
y(x∂x + t∂t ) + 1

2 (1 − x2 + y2 − t2)∂y
)

(3)

G2 = i
(
x(y∂y + t∂t ) + 1

2 (1 + x2 − y2 − t2)∂x
)

(4)

G3 = −i(x∂y − y∂x) (5)

F1 = i
(
x(y∂y + t∂t )− 1

2 (1 − x2 + y2 + t2)∂x
)

(6)

F2 = i
(
y(x∂x + t∂t )− 1

2 (1 + x2 − y2 + t2)∂y
)

(7)

F3 = −i(x∂x + y∂y + t∂t ) (8)

which satisfy the commutation relations of the sl(2,C) algebra,

[Gk,Gl] = iεklmGm [Gk, Fl] = iεklmFm [Fk, Fl] = −iεklmGm j, k, l = 1, 2, 3. (9)

Note that the ranges of the coordinate indices µ, ν and of the Lie-algebra indices j, k, l are
the same. They all may take the values 1, 2 and 3.

Using the theory of induced representations, suitable matrix-valued modifications can be
made to these Killing vectors still leaving the sl(2,C) commutation relations intact. Since
H � SL(2,C)/SU(2), this can be achieved by choosing an irreducible unitary representation
for SU(2) characterized by a particular value of the spin s. If the generators of this unitary
irreducible representation are denoted by Sj , they are (2s + 1)× (2s + 1)-matrices satisfying
the usual relations [Sj , Sk] = iεjklSl . Then the generators of the induced representation for
SL(2,C) induced by this unirep of SU(2) are matrix-valued differential operators [15]. In
mathematics, they are operators acting on wavefunctions that are the sections of the (2s + 1)-
dimensional vector bundle overSL(2,C)/SU(2), an associated bundle to the canonical bundle
with total space SL(2,C)) over the base space SL(2,C)/SU(2) with fibre SU(2).

These sl(2,C) generators of the representation induced by the spin s representation of
su(2) are

G1 = G1 + tS1 − xS3 G2 = G2 + tS2 − yS3 G3 = G3 + S3 (10)

F1 = F1 + tS2 − yS3 F2 = F2 + xS3 − tS1 F3 = F3. (11)

This new set of generators satisfies the set of commutation relations

[Gk,Gl] = iεklmGm [Gk,Fl] = iεklmFm [Fk,Fl] = −iεklmGm j, k, l = 1, 2, 3 (12)

and so gives a realization of the sl(2,C) algebra in terms of matrix-valued differential
operators. To render the paper self-contained, an explicit construction for both the sets of
generators (Gj , Fk) and (Gj ,Fk) by using previous results [15] is given in appendix A.
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3. Casimir operators and Hamiltonians

As SL(2,C) is a group of rank two, there are two independent Casimir operators. For
realizations given in equations (3)–(8), (10) and (11), they are

C1 = G2 − F 2 C2 = GjFj = FjGj (13)

C1 = G2 − F2 C2 = GjFj = FjGj (14)

in which it is understood that repeated indices are summed. Then, it can be shown that

C1 = t2∂2
t − t∂t + t2

(
∂2
x + ∂2

y

)
C2 = 0 (15)

and

C1 = C1 + 2it (S2∂x − S1∂y) + S2
3 iC2 = t (S1∂x + S2∂y + S3∂t )− S3. (16)

Next, it is useful to introduce

A = AjµSj dxµ = 1

x3
(S1 dx2 − S2 dx1) = 1

t
(S1 dy − S2 dx) ∇µ ≡ ∂µ − iAµ. (17)

The one-form A is an SU(2)-valued gauge field living on H. Or, more precisely, A is the
pull-back of the canonical connection to our vector bundle associated with the principal bundle
(SL(2,C), SU(2),H) with respect to the section, equation (146) defined in appendix A. Here
also ∇µ is the usual covariant derivative containing the gauge field. Also, I introduce the
generalization of the Laplace–Beltrami operator by replacing ∂µ in the usual definition by ∇µ.
Using the definitions above and equation (2) gives

�(A) ≡ 1√
g

∇µ(√ggµν∇ν) = C1 − S2 (18)

so that the Landau-like Hamiltonian H = −�(A) (h̄ = 2m = 1) is the difference
of the quadratic Casimir operators of SL(2,C) and SU(2) in the induced and inducing
representations, respectively. This result is a special case of a more general result well known
in the literature (see [15], and references therein). One can also calculate the field-strength
(curvature two-form) F = dF − iA ∧A which is

F = 1

2
FjµνSj dxµ ∧ dxν = 1

2t2
εµνj Sj dxµ ∧ dxν ≡ 1

2
εµνρB

j
ρSj dxµ ∧ dxν (19)

where the last entry in equation (19) defines the ‘magnetic field’ B. In vector notation with
matrix indices being implicit,

B = 1

t2
S. (20)

Note that the ‘magnetic field’ of equation (20) is a natural generalization of the single-
component quantity (the ‘constant magnetic field’) introduced in the context of the upper
half plane model SL(2,R)/U(1) with the line element ds2 = dx2+dy2

y2 via the two-form

F = B
dx∧ dy
y2 [5]. Equation (20) also reveals that, in this non-Abelian generalization, the

su(2) generators S play the role of the constant magnetic field B of the upper half plane model.
The HamiltonianH ≡ −�(A) defines the first model in this study. It describes the motion of
a charged particle in H under the influence of an SU(2) gauge field with the isospin s.

However, there is also a related one-dimensional solvable scattering problem. This can
be obtained by using a similarity transformation S(t) ≡ t and a coordinate transformation
t = e−r on the Casimir operators giving

C ′
1 ≡ S−1C1S = ∂2

r + e−2r� + 2 i e−r (S2∂x − S1∂y) + S2
3 − 1 (21)
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iC ′
2 ≡ S−1(iC2)S = −S3∂r + e−r (S1∂x + S2∂y) (22)

where � = ∂2
x + ∂2

y is the Laplace operator on R2. An alternative form of these operators can
be found by identifying R2 with C, introducing complex coordinates z = x+iy and z = x− iy,
and having the basis for one-forms and vector fields as

dz = dx + i dy dz = dx − i dy ∂ = 1
2 (∂x + i∂y) ∂ = 1

2 (∂x − i∂y) (23)

satisfying dz(∂) = dz(∂) = 1, dz(∂) = dz(∂) = 0. Note that the Laplacian on C in these
coordinates has the form � = 4∂∂. The operators ∂ and ∂ are the usual Cauchy–Riemann
operators with complex variables. In these coordinates the Casimir operators become

C ′
1 = ∂2

r + e−2r� + 2 e−r (S+∂ − S−∂) + S2
3 − 1 (24)

iC ′
2 = −S3∂r + e−r (S+∂ + S−∂) (25)

where S± = S1 ± iS2.
Since the Laplace operator � = 4∂∂ commutes with C ′

1 and C ′
2, one can define new

operators as

S+ = S1 + iS2 = S+ ⊗D S− = S1 − iS2 = S− ⊗D† S3 = S3 ⊗ 1 (26)

where

D ≡ 2

iλ
∂ D† ≡ 2

iλ
∂ (27)

acting on C2s+1 ⊗ Fλ. They form the space of complex, vector-valued functions satisfying(� + λ2
)
χ(r, z, z) = 0. These new generators also satisfy the commutation relations of an

su(2) algebra, namely,

[Sj ,Sk] = iεjklSl (28)

and the Casimir operators restricted to such subspaces with definite λ are given by

C ′
1 = ∂2

r − λ2 e−2r − 2λS2 e−r + S2
3 − 1 C ′

2 = iS3∂r + λ e−rS1. (29)

The symbol ⊗ has been used to stress the dual role played by these quantities. They are
simultaneously matrices and differential operators. Hereafter, for simplicity, quantities such
as S+ ⊗D will be written by juxtaposition, i.e. as S+D.

The irreducible unitary representations of the group SL(2,C) are characterized by the
pair (j0, j1). For the principal series of unitary irreducible representations, j1 = ik where
k ∈ R and j0 = 0, 1

2 , 1, . . . [16]. This set of representations describes scattering states of a
charged particle moving on H in the field of the SU(2) gauge field.

As a next step, recall that the eigenvalues of our Casimir operators are given by [16]

C1|j0, j1; ζ 〉 = (
j 2

0 + j 2
1 − 1

) |j0, j1; ζ 〉 C2|j0j1; ζ 〉 = −ij0, j1|j0, j1; ζ 〉 (30)

where ζ represents additional labels to be specified later as required. For the particular
realization to be used, it is useful to define the wavefunction as

	j0j1;ζ (r, z, z) ≡ 〈r, z, z|j0j1; ζ 〉. (31)

Note that 	j0j1;ζ (r, z, z) is a 2s + 1 component vector-valued wavefunction, its vector indices
have been left implicit here. Using this wavefunction in equation (30) and restricting attention
to the principal series of unitary irreducible representations, the eigenvalue equations for C ′

1
and C ′

2 yield(−∂2
r + λ2 e−2r + 2λ e−rS2

)
	j0k;ζ (r, z, z) = (

k2 + S2
3 − j 2

0

)
	j0k;ζ (r, z, z) (32)

(iS3∂r + λ e−rS1 − j0k)	j0k;ζ (r, z, z) = 0. (33)

Formally identifying j 2
0 with the eigenvalue of S2

3 gives equation (32) as a Schrödinger-like
equation for a one-dimensional scattering problem with a matrix-valued Morse-potential and
at a scattering energy E = k2.
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4. Separation of variables

To perform the separation of variables note that the operator −� = P 2
1 + P 2

2 is the
Casimir operator of the Euclidean group E(2) in two dimensions. This group is generated
by the translation operators P1 = −i∂x, P2 = −i∂y and the ‘combined’ rotation G3 =
−i(x∂y − y∂x) + S3. Moreover, G3 is the generator of the SO(2) subgroup of E(2). Since
� and G3 taken together with the Casimir operators C1 and C2 form a mutually commuting
system of operators, further labels can be attached to the states forming |j0j1; λm〉. Those
labels stem from the extra equations to be satisfied, namely,

(� + λ2)	j0k;λm(r, z, z) = 0 (G3 −m)	j0k;λm(r, z, z) = 0 (34)

where m is integer or half-integer depending on the value of the isospin s. Consequently,
the separation of variables can be achieved by using the subgroup chain SO(2) ⊂ E(2) ⊂
SL(2,C).

The solution satisfying equations (34) is


λs
mn(�, θ) ≡ χsn ⊗ Y λmn(�, θ) ≡ χsn ⊗ im−nJm−n(λ�) ei(m−n)θ −s � n � s (35)

as can be verified by introducing the polar coordinates (x, y) = (� cos θ, � sin θ). Here a
phase factor im−n has been introduced for convenience. For a fixed set of λ, s,m, n,
λs

mn(�, θ)

is a 2s + 1 component column vector with zeros everywhere except for the function Y λmn(�, θ)
occupying the nth entry.

Moreover, in polar coordinates the operators in equation (27) take the form

D† = −i eiθ
(
∂w +

i

w
∂θ

)
D = −i e−iθ

(
∂w − i

w
∂θ

)
(36)

where w = λ�. Using the recursion relations in equation (3.1.27) on page 361 of [17](
d

dw
− (m− n)

w

)
Jm−n(w) = −Jm−(n−1)(w)

(37)(
d

dw
+
(m− n)

w

)
Jm−n(w) = Jm−(n+1)(w)

gives

D†Y λmn(ρ, θ) = Y λmn−1(ρ, θ) DYλmn(ρ, θ) = Y λmn+1(ρ, θ). (38)

S± and S3 act as the usual SU(2) generators on the functions
λs
mn(�, θ), since

S±
λs
mn(�, θ) =

√
(s ∓ n)(s ± n + 1)
λs

mn±1(�, θ) S3

λs
mn(�, θ) = n
λs

mn(�, θ) (39)

so that the group theoretical meaning of 
 can be clarified as follows.
The Euclidean groupE(2) is generated by a rotation with an angle ϕ and two translations

by the vectors (� cos θ, � sin θ). The unitary irreducible representations of E(2) are classified
by the purely imaginary number iλ, λ > 0. According to equations (1) and (5) on page 168
of [18], the matrix elements of these unitary irreducible representations in the SO(2) basis are

t iλm′m(ϕ, �, θ) = im−m′
Jm−m′(λ�) e−imϕ ei(m−m′)θ . (40)

Using equations (35) then,
 can be expressed as


λs
mn(�, θ) = χsn ⊗ t iλnm(0, �, θ) m ∈ Z or m ∈ 1

2 Z −s � n � s. (41)

Thus, an ansatz for the separation of variables can be made for the wavefunction
	j0k,λmsα(r, �, θ) (−s � α � s) satisfying equations (32) and (33). That ansatz is

	j0k,λmsα(r, �, θ) =
s∑

n=−s
ψ
kj0
λsn(r)


λs
mnα(�, θ) −s � α � s. (42)
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By choosing the SL(2,C) irreducible unitary representations as those labelled by the pair
(k, j0) where k > 0 and −s � j0 � s (they are inequivalent [16]), the radial part of the
coupled channel wavefunction in the indices −s � j0, n � s becomes a (2s + 1)× (2s + 1)
matrix ψnj0(r). The remaining indices again have been suppressed for simplicity. The
columns ofψnj0(r) belong to inequivalent unireps of SL(2,C) and specify different scattering
boundary conditions. In mathematical language such objects are matroms of representations
[19].

By virtue of equation (39), the matrix-valued differential operators S± and S3 in the base
as given by the 2s + 1 base vectors 
n, take the usual matrix forms S± and S3. Hence the
radial versions of equations (32) and (33) can be written as

(
∂2
r + λ2 e−2r + 2λ e−rS2 + k2 + adS2

3

)
ψkλs(r) = 0 (43)

(iS3∂r + λ e−rS1)ψ
k
λs(r) = kψkλs(r)S3 (44)

where

adS2
3ψ

k
λn(r) ≡ S2

3ψ
k
λs(r)− ψkλs(r)S

2
3 (45)

the matrix indices again being implicit. To solve equations (43) and (44), the group theoretical
meanings of the separation ansatz (42) and of the coupled channel wavefunctionψkj0

λsn(r)must
be clarified.

As demonstrated in appendix A, the key equation in the construction of matrix-valued
differential operators is the choice of section of the bundle L(x, y, t). This is an SL(2,C)-
valued function defined locally on the coset H ∼ SL(2,C)/SU(2). Then as the Hamiltonian is
related to the quadratic Casimir of sl(2,C)with generators taken in the induced representation
U , finding the correct separation of variables ansatz for its eigenvalue problem amounts to
doing harmonic analyses on H. The theory of harmonic analyses on coset spaces [20]
determines that the complete set of harmonics for a vector-valued field (carrying labels of the
inducing representation of SU(2)) living on the coset H is given by matrix elements of the
form 〈j0k; sν|U(L−1(x, y, t))|j0k; λm〉 where −s � ν � s. For each fixed set of values of
j0, k, λ,m and s, this matrix element is a 2s + 1 component quantity.

L(x, y, t) is defined in the non-unitary finite-dimensional spinor representation of
SL(2,C) and can be written as

L(x, y, e−r ) =
(

1 x − iy
0 1

)(
e−r/2 0

0 er/2

)
. (46)

The generators of SL(2,C) in this representation are Ja = 1
2σa and Kα = i

2σα; details are
given in appendix A. Introducing the two commuting 2 × 2 matrices

M1 = K1 − J2 =
(

0 i
0 0

)
M2 = K2 + J1 =

(
0 1
0 0

)
(47)

permits L(x, y, e−r ) to be recast in the form

L(x, y, e−r ) = e−i(xM1+yM2) eirK3 . (48)

As L(x, y, e−r ) in the induced representation relates to U(L(x, y, e−r )), (Ja,Kα) must be
replaced by (Ga,Fα) and, as a consequence, (M1,M2) must be replaced by (P1, P2). In this
context, note equations (3)–(8), (10) and (11). Hence

U(L−1(x, y, e−r )) = e−irF3 ei(xP1+yP2). (49)
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The matrix element 〈j0k; sν|U(L−1(x, y, e−r )|j0k; λm〉 then can be evaluated by inserting
resolutions of the identity on C2s+1 (viewed as a subspace of the infinite-dimensional
representation space), so that

〈sν|U(L−1(x, y, e−r ))|λn〉 =
s∑

n,n′=−s
〈sν|sn′〉〈sn′ | e−irF3 |λn〉〈λn| ei(xP1+yP2)|λm〉. (50)

As F3 acting on the base |sn′〉 shifts the values of s but leaves the value n′ intact [16], n = n′

and the above is simply a sum over n. In that sum, the first and third terms are
(
χsn′
)
ν

and
t iλnm(0, �, θ), respectively, so that equation (50) recovers the separation ansatz (42), provided

ψ
kj0
λsn(r) = in+j0 er〈j0k; sn|e−irF3 |j0k; λn〉. (51)

Note that this condition differs from that of equation (41) of [21] by a factor of in+j0 er . The sec-
ond term in this product amounts to the similarity transformation introduced in equations (21),
(22) and the first to inclusion of factors in into the representation matrix elements of P1

(compare the relevant expressions in [21]).
However, unlike in the usual definition of the matrom [19], the matrix elements of the

operator established herein are expressed in a mixed base, corresponding to the two different
subgroup chains. The spin content is expressed by the chain U(1) ⊂ SU(2) ⊂ SL(2,C) via
the labels j0, k, s, n. The other chain SO(2) ⊂ E(2) ⊂ SL(2,C) with which labels j0, k, λ, n

are associated, represents the separation of variables. The important observation is that the
matrix element, equation (51), is symmetric when regarded as a matrix in the indices j0 and
n. This can be easily proved using the results of [21]. Then

ψ
kj0
λsn(r) = in+j0 erNλs

1

2

∫ 1

−1
d(cos θ)dsnj0

(θ)Jn−j0

(
λ e−r tan

θ

2

)[
ercos2 θ

2

]−ik−1

(52)

where dsnj0
(θ) = 〈sn| e−iθS2 |sj0〉 and Nλs is a normalization factor independent of the values

of (n, j0), and as the relations

dsnj0
(θ) = (−1)n−j0dsj0n

(θ) Jn−j0(x) = (−1)j0−nJj0−n(x) x = λ e−r tan(θ/2) (53)

ensure that the integral is invariant with respect to a change of n and j0,

ψ
kj0
λsn(r) = ψknλsj0

(r). (54)

Note that the form of the coupled channel wavefunction after integration [21] involves the
Meier functionG21

13 with arguments containing the index pair (j0, n) and so carries the matrix
structure of the coupled channel wavefunction in a complicated way. It was desirable to exhibit
the channel structure more clearly in what follows, and so I sought another representation
by continuing a study of the properties of the Casimir operators. Having two different
representations for the coupled channel wavefunction is also useful when calculating the
scattering matrix.

Using the symmetry relation (54) enables equation (43) to be replaced. By taking the
transpose of equation (43) and using that with equation (54) yields

(
adS2

3ψ
)T = −(adS2

3ψ
)
.

Then by adding equation (43) to its transpose and using ST
2 = −S2, the alternate equation to

equation (43) results, namely,(
∂2
r − λ2 e−2r − λ e−radS2 + k2

)
ψkλs(r) = 0. (55)

The utility of this equation is that it contains only one of the matrices S, i.e. S2. Then with the
variable

q = 2λ e−r (56)
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and the new function

Rk
λs(q) ≡ √

qψkλs(q) (57)

equations (55) and (44) can be recast as(
q2∂2

q + 1
4 − 1

4q
2 − 1

2q(adS2) + k2)Rk
λs(q) = 0 (58)

and [(
q∂q − 1

2

)
S3 +

i

2
qS1

]
Rk
λs(q) = ikRk

λs(q)S3. (59)

The first of these is a matrix analogue of Whittaker’s equation [17],(
∂2
q +

1/4 + k2

q2
− 1

4
+
κ

q

)
F(q) = 0 (60)

solutions of which are the Whittaker functionsWκ,ik(q) andMκ,±ik(q) [17] and which satisfy
Wκ,−ik(q) = Wκ,ik(q). With the spectral projectors Pα of S2, as

S2 =
s∑

α=−s
αPα PαPβ = δαβPβ (61)

and as S2Pα = αPα and PαS2 = αPα , the ansatz

Rk
λs±(q) =

s∑
α,β=−s

PαC±(k)PβM− 1
2 (α−β),±ik(q) q = 2λ e−r (62)

and a similar one containing the functionW− 1
2 (α−β),ik(q) satisfy equation (58). Here C±(k) is

a (2s + 1)× (2s + 1)-matrix depending only on k. Equation (62) is called the general solution
of equation (58). Note that Pα can be represented as

Pα =
s∏

γ �=α,γ=−s

S2 − γ

α − γ
(63)

yielding PT
α = P−α . Hence equation (62) in this case assuredly is symmetric. But to also

satisfy constraint (54), C±(k) must be symmetric. That will be shown, but, to gain insight
into the nature of the matrix C±, first it is instructive to work out the isospin- 1

2 and 1 cases
separately and by conventional means.

5. Special cases

5.1. The spin- 1
2 case

As an alternative derivation for this special case consider the eigenvalue problem of C ′
2 that

resulted in equation (59). For isospin 1
2 , Sj = 1

2σj and equation (59) becomes(
q∂q − 1

2
i
2q

i
2q

1
2 − q∂q

)(
α(q) γ (q)

β(q) δ(q)

)
= ik

(
α(q) −γ (q)
β(q) −δ(q)

)
. (64)

The consistency of the resulting set of equations demands thatα(q)= −δ(q) andβ(q)= γ (q).
Hence the pair of equations to be satisfied is(
q∂q − 1

2
− ik

)
α(q) +

i

2
qβ(q) = 0

(
q∂q − 1

2
+ ik

)
β(q)− i

2
qα(q) = 0. (65)

As the recursion relations for the functionsMκ,τ (q) are [17](
q∂q + κ − 1

2q
)
Mκ,τ (q) = (

1
2 + τ + κ

)
Mκ+1,τ (q) (66)(

q∂q − κ + 1
2q
)
Mκ,τ (q) = (

1
2 + τ − κ

)
Mκ−1,τ (q) (67)
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with κ = ± 1
2 and τ = ±ik, they are

(
q∂q − 1

2 − 1
2q
)
M− 1

2 ,±ik(q) = ±ikM+ 1
2 ,±ik(q) (68)(

q∂q − 1
2 + 1

2q
)
M+ 1

2 ,±ik(q) = ±ikM− 1
2 ,±ik(q). (69)

Using similar relations for the functionsWκ,τ (q) [17] one finds(
q∂q − 1

2 + 1
2q
)
W+ 1

2 ,ik
(q) = k2W− 1

2 ,ik
(q)

(70)(
q∂q − 1

2 − 1
2q
)
W− 1

2 ,ik
(q) = −W+ 1

2 ,ik
(q).

By adding and subtracting these relations, three different sets of solutions for equation (59)
result. They are

R±(q) =


 M− 1

2 ,±ik(q)±M+ 1
2 ,±ik(q) i

(
M− 1

2 ,±ik(q)∓M+ 1
2 ,±ik(q)

)
i
(
M− 1

2 ,±ik(q)∓M+ 1
2 ,±ik(q)

)
−
(
M− 1

2 ,±ik(q)±M+ 1
2 ,±ik(q)

)

 (71)

and

R(q) =


 W− 1

2 ,ik
(q) + i

k
W+ 1

2 ,ik
(k) i

(
W− 1

2 ,ik
(q)− i

k
W+ 1

2 ,ik
(q)
)

i
(
W− 1

2 ,ik
(q)− i

k
W+ 1

2 ,ik
(q)
)

−
(
W− 1

2 ,ik
(q) + i

k
W+ 1

2 ,ik
(q)
)

 . (72)

Using equation (57) the corresponding eigenfunctions of C ′
2 are also eigenfunctions to C ′

1.
To clarify the meaning of these solutions, consider the asymptotic behaviour of the

coupled channel wavefunctions. First, note that the boundary of the upper half space, i.e. the
set of points with t = 0 and t = ∞, is infinitely far away with respect to metric (2). Since
q = 2λ e−r , taking the |r| → ∞ limit of the one-dimensional scattering problem corresponds
to the description of the wavefunction of the three-dimensional non-Abelian Landau problem
on the boundary of H. Recall that [17]

Wκ,µ(q) = �(−2µ)

�(1/2 − µ− κ)
Mκ,µ(q) +

�(2µ)

�(1/2 + µ− κ)
Mκ,−µ(q) (73)

where

Mκ,µ(q) = e− 1
2 qq

1
2 +µ

1F1
(

1
2 + µ− κ; 1 + 2µ; q) (74)

in which 1F1(a; b; q) = 1 + a
b

q

1! + a(a+1)
b(b+1)

q2

2! + · · · is Kummer’s function [17].

Using q = 2λ e−r , κ = ± 1
2 and µ = ik gives

Rk

λ 1
2
(r) = �(−2ik)

�(1 − ik)
Rk

λ 1
2 ;+(r) +

�(2ik)

�(1 + ik)
Rk

λ 1
2 ;−(r). (75)

Note that the limit r → −∞ yields vanishing wavefunctions due to the presence of the term
e− 1

2 q in equation (74). That is also clear since the interaction term is a combination of potentials
of the forms e−r and e−2r , hence the interaction matrix goes to infinity as r → −∞. It follows
that the only non-vanishing scattering quantities are the reflection coefficients for the two
scattering channels. Reverting to the coupled channel wavefunction by using equation (57)
and then taking the r → ∞ limit gives

lim
r→∞ψ

k

λ 1
2
(r) ∼ (2λ)ik

�(−2ik)

�(−ik)
e−ikr ⊗ (−σ3) + (2λ)−ik �(2ik)

�(ik)
eikr ⊗ (iσ1). (76)
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Clearly then ψ±(r) are the coupled channel analogues of the in- and out-going states, while
ψ(r) is the physical coupled channel wavefunction. Using the duplication formula for the �
function, and normalizing the amplitude of the incoming plane wave part to unity gives us the
scattering matrix

lim
r→∞ψ

k

λ 1
2
(r) ∼ e−ikr ⊗ I −

(
λ

2

)−2ik
�(1/2 + ik)

�(1/2 − ik)
eikr ⊗ σ2 (77)

where

Sλ 1
2
(k) = −

(
λ

2

)−2ik
�(1/2 + ik)

�(1/2 − ik)
σ2 (78)

a form which clearly identifies the scattering as a helicity scattering wherein a particle with
isospin projection 1

2 is scattered to an isospin projection − 1
2 , and vice versa.

This allows further insight into the structure of the general solution obtained in
equation (62). Indeed, the expressions of equation (71) for the ‘in’ and ‘out’ solutions
are in the form of equation (62) with the special choice

C+ = −σ3 C− = iσ1 (79)

which are now independent of k. Moreover, from equation (76), precisely the same C±
matrices appear in the asymptotic form of the radial part of the coupled channel wavefunction.

Now consider the explicit form of the scattering solutions to the three-dimensional
problem. For this the �, θ dependence of the wavefunction must be considered. To within a
normalization factor, from equations (40)–(42) those functions are

	
1
2 k

λm 1
2
(r, �, θ) = im−1/2

√
2λ

er/2



(

i
k
W 1

2 ,ik
(2λ e−r ) +W− 1

2 ,ik
(2λ e−r )

)
Jm−1/2(λ�) ei(m−1/2)θ(

i
k
W 1

2 ,ik
(2λ e−r )−W− 1

2 ,ik
(2λ e−r )

)
Jm+1/2(λ�) ei(m+1/2)θ




(80)

and

	
− 1

2 k

λm 1
2
(r, �, θ) = −im+1/2

√
2λ

er/2



(

i
k
W 1

2 ,ik
(2λ e−r )−W− 1

2 ,ik
(2λ e−r )

)
Jm−1/2(λ�) ei(m−1/2)θ(

i
k
W 1

2 ,ik
(2λ e−r ) +W− 1

2 ,ik
(2λ e−r )

)
Jm+1/2(λ�) ei(m+1/2)θ


 .
(81)

Note that there are no bound states for the isospin 1
2 case. That follows by diagonalizing

the interaction term in equation (32), so obtaining the Morse potentials λ2 e−2r + λ e−r and
λ2 e−2r − λ e−r (λ > 0). Such can be done in the spin- 1

2 case since, for that case, the adS2
3

term is absent. Clearly the first of these potentials does not support the bound states. With
regard to the second, recall that the unitary irreducible representations of SL(2,C) fall into
two distinct classes; the principal series which was required to describe the scattering states
and the supplementary series which is characterized by the conditions j0 = 0 and 0 � j1 � 1.
Hence, the only possible choices omitted have (j0, j1) = (

0, 1
2

)
and its equivalent mirror

conjugate
(
0,− 1

2

)
describing zero modes, i.e. eigenstates with E = 0. The presence of such

zero modes originates from the ones of equation (33). Reintroducing the variable t = e−r and
noting that −∂r = t∂t , readily shows that these eigenfunctions are of the form e±λt . However,
this eigenfunction is not square integrable for the relevant part of the hyperbolic measure being
1
t3

dt .
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5.2. The spin-1 case

For the spin-1 case, consistency of equation (59) constrains the wavefunction to take the
following form:

R(q) =

α(q) β(q) γ (q)

β(q) δ(q) −β(q)
γ (q) −β(q) α(q)


 (82)

with the equations to be solved being(
q∂q − 1

2
− ik

)
α(q) +

i

2

√
2

2
qβ(q) = 0

(
q∂q − 1

2
+ ik

)
γ (q)− i

2

√
2

2
qβ(q) = 0

(83)

and(
q∂q − 1

2

)
β(q) +

i

2

√
2

2
qδ(q) = 0

i

2

√
2

2
q (α(q) + γ (q)) = ikβ(q). (84)

Recalling the relations

q∂qM0,±ik(q) = 1
2

(
1
2 ± ik

)
(M1,±ik(q) +M−1,±ik(q)) (85)

derived from equations (68) and (69), and since [17]

qM0,±ik(q) = (
1
2 ± ik

)
(M−1,±ik(q)−M1,±ik(q)) (86)

with the choice α(q) + γ (q) = M0,±ik(q), one finds

β±(q) = 1

4ik
i
√

2qM0,±ik(q). (87)

Adding equations (83) leads to (q∂q − 1/2)(α(q) + γ (q)) = ik(α(q) − γ (q)), which, with
α(q) + γ (q) = M0,±ik(q), in equation (85) gives

α(q)− γ (q) = 1

2ik

(
−M0,±ik(q) +

(
1

2
± ik

)
(M1,±ik(q) +M−1,±ik(q))

)
. (88)

Then from the first entries in equations (84) and (87), δ(q) is found. In all the results are

α±(q) = 1

4ik

(
(−1 + 2ik)M0,±ik(q) +

(
1

2
± ik

)
(M1,±ik(q) +M−1,±ik(q))

)
(89)

γ±(q) = 1

4ik

(
(1 + 2ik)M0,±ik(q)−

(
1

2
± ik

)
(M1,±ik(q) +M−1,±ik(q))

)
(90)

and

δ±(q) = − 1

2ik

(
M0,±ik(q) +

(
1

2
± ik

)
(M1,±ik(q) +M−1,±ik(q))

)
. (91)

A repeat of the argument given previously for the functionsWκ,τ (q) produces the similar
set

α(q) = 1

4ik

(
(−1 + 2ik)W0,ik(q) +

(
1

2
+ ik

)(
1

2
− ik

)
W−1,ik(q)−W1,ik(q))

)
(92)

γ (q) = 1

4ik

(
(1 + 2ik)W0,ik(q)−

(
1

2
+ ik

)(
1

2
− ik

)
W−1,ik(q) +W1,ik(q))

)
(93)
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and

δ(q) = − 1

2ik

(
W0,ik(q) +

(
1

2
+ ik

)(
1

2
− ik

)
W−1,ik(q)−W1,ik(q))

)
(94)

with

β(q) = 1

4ik
i
√

2qW0,ik(q) (95)

that are to be used in the matrix equation (82). The full radial coupled channel wavefunction
is then obtained by multiplying with 1√

q
.

To make contact with equation (62), the spectral projectors for the spin-1 case are required.
Using the explicit form

S2 = i

√
2

2


0 −1 0

1 0 −1
0 1 0


 (96)

since S3
2 = S2, those projectors satisfy the usual relations

P± = 1
2S2(S2 ± I) P0 = (I − S2)(I + S2). (97)

Also the choice

C+(k) =

ik 0 0

0 −ik − 1 0
0 0 ik


 C−(k) =


0 0 ik

0 ik − 1 0
ik 0 0


 (98)

in equation (62) gives back the solutions of equation (87), and equations (89)–(91). That can
be ascertained by using

C+(k)S2 = −S2(C+(k) + I) C−(k)S2 = −S2(C−(k)− E) E =

0 0 1

0 −1 0
1 0 0




(99)

to prove relations

P±C+(k)P∓ = P±
(
C+(k) + 1

2I
) P±C+(k)P± = − 1

2P± [P0, C+(k)] = 0 (100)

and

P±C−(k)P∓ = P±
(
C−(k)− 1

2E
) P±C−(k)P± = 1

2P±E [P0, C−(k)] = 0

(101)

with which equation (62) can be rewritten in terms of the explicit form of the projectors.
Moreover, a relation similar to that of equation (75) holds, i.e.

Rk
λ1(r) = �(−2ik)

�(1/2 − ik)
Rk
λ1;+(r) +

�(2ik)

�(1/2 + ik)
Rk
λ1;−(r) (102)

with the channel structure ofR andR± as shown in equation (82). Since by using equation (74)
it can be shown that

lim
r→∞α−(r) = lim

r→∞ γ+(r) = 0

the asymptotic form of the radial part of the coupled channel wavefunction is

lim
r→∞ψ

k
λ1(r) = (2λ)ik

�(−2ik)

�(1/2 − ik)
e−ikr ⊗ C+(k) + (2λ)−ik �(2ik)

�(1/2 + ik)
eikr ⊗ C−(k) (103)
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in which C±(k) is given in equation (98). The resulting scattering matrix is

Sλ1(k) =
(
λ

2

)−2ik
�(ik)

�(−ik)


0 0 1

0 1−ik
1+ik 0

1 0 0


 . (104)

Thus, both the isospin- 1
2 and 1 cases yield scattering matrices that can be expressed as

a product of two phase factors and a skew-diagonal matrix describing the helicity scattering
process. This skew-diagonal matrix is of the form C−(k)C+(k)

−1. Hence to obtain a full
description of the scattering process for an arbitrary isospin, a means to specify C±(k) needs
to be found. Moreover, the matrices C±(k) are the only unknowns in equation (62).

6. The coupled channel wavefunction

While equation (62) defines the radial coupled channel wavefunction, from the foregoing the
quantities unknown therein are the matrices C±(k). In view of the spin- 1

2 and 1 results, it
can be conjectured that these matrices in all cases should appear in the scattering matrix in
the combination C−(k)C−1

+ (k) and with C+(k) being a diagonal and C−(k) a skew-diagonal
matrix. That conjecture can be proved when the limit r → ∞ of the radial equations (43) and
(44) is taken, giving(

∂2
r + k2 + adS2

3

)
ψk∞λs (r) = 0 iS3∂rψ

k∞
λs (r) = kψk∞λs (r)S3. (105)

Multiplying the second equation with S3 from the right, and then its transpose from the left,
using the symmetry property of ψ , and then subtracting the resulting two equations, gives(
adS2

3

)
αγ

(
ψk∞λs

)
γβ
(r) = [

S2
3 , ψ

k∞
λs (r)

]
αβ

= 0 −s � α, β, γ � s. (106)

Putting this result into the first term of equation (106), results in the asymptotic form

ψk∞λs (r) = Aλs;+(k) eikr +Aλs;−(k) e−ikr (107)

where the amplitudes Aλs;±(k) are the (2s + 1)× (2s + 1)-matrices. Moreover, since S3 is a
diagonal matrix, equation (106) infers (α2 − β2)

(
ψk∞λs

)
αβ
(r) = 0. Hence the only nonzero

components of the coupled channel wavefunction ψk∞λs (r) have α = ±β. Using the ansatz of
equation (107) in the second segment of equation (105) gives the amplitudes

S3Aλs;±(k) = ∓Aλs;±(k)S3 i.e. (α ± β)(Aλs;±)αβ(k) = 0. (108)

These relations in conjunction with (A±)αβ only having non-zero components when α = ±β,
yield the important result that A−(k) is a diagonal and A+(k) is a skew-diagonal matrix.

To relate to the matrices C±(k), note that because of equations (62) and (74), ψkλs±(r) =
er/2Rk

λs±(r) asymptotes as

lim
r→∞ψ

k
λs±(r) = (2λ)±ik e∓ikr

s∑
α,β=−s

PαC±(k)Pβ = (2λ)±ik e∓ikrC±(k). (109)

Also as
∑s

α=−s Pα = I , the channel structure ofC±(k) is fixed by that ofA∓(k). HenceC+(k)

is a diagonal, and C−(k) is a skew-diagonal matrix as expected.
To determine the unknown matrices C±(k), it is appropriate to use the two different

representations given for the wavefunction. Form (62) when multiplied by q−1/2 can
be compared with the corresponding components of the representation in equation (52).
Since the unknown quantities C±(k) in equation (62) characterize the asymptotic behaviour,
these matrices can be extracted from the asymptotic limit of the equivalent representation (52).
The normalization factor and other overall non-matrix-valued quantities are not relevant to
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this process. So the wavefunction of equation (52) must be re-expressed in a form suitable to
take the limit r → ∞. Details of this are given in appendix B. The result is

lim
r→∞ψ

kj0
λns(r) ∼ i2n

(
λ

2

)ik

(−1)s+n
[
�(n− ik)

�(n + 1 + ik)

�(s + 1 + ik)

�(s + 1 − ik)

]
δn,j0 e−ikr

+

(
λ

2

)−ik

(−1)s+n
�(n + ik)

�(n + 1 − ik)
δn,−j0 eikr −s � n, j0 � s. (110)

To within an arbitrary normalization and phase factor of −eiπs , this is

lim
r→∞ψ

kj0
λns(r) ∼

(
λ

2

)ik

�({s} − ik)(C+)nj0(k) e−ikr +

(
λ

2

)−ik

�({s} + ik)(C−)nj0(k) eikr

(111)

where

(C+)nj0(k) = −eiπs(−1)s+nin+j0
�(n − ik)

�({s} − ik)

�(s + 1 + ik)

�(n + 1 + ik)
δn,j0 (112)

and

(C−)nj0(k) = −eiπs(−1)s+nin+j0
�(n + ik)

�({s} + ik)

�(s + 1 − ik)

�(n + 1 − ik)
δn,−j0 . (113)

Here {s} denotes the fractional part of the isospin s. As a check, it is easy to see that
equations (112) and (113) give back the results for the isospin- 1

2 and 1 cases shown in
equations (79) and (98).

Hence, I can conclude that the final form of coupled channel wavefunction is (to an
arbitrary normalization)

ψkλ,s(r) = 1√
2λ

er/2
(
�({s} + ik)Rk

λs;−(r) + �({s} − ik)Rk
λs;+
)

(114)

where Rk
λs;±(r) is specified by equation (62), and C±(k) is to be taken from equations (112)

and (113). Note that, and as shown in appendix C, the spectral projectors Pα that are needed
also in equation (62) can be represented as

(Pα)µν = uµαuνα uµα = iµ2−s(2s)!√
(s + µ)!(s − µ)!(s + α)!(s − α)!

Ks+α

(
s + µ; 1

2
; 2s

)
(115)

where uα are the eigenvectors of the matrix S2 belonging to the eigenvalue α and
Ks+α(s +µ; 1/2; 2s) are the Krawtchouk polynomials. An alternate expression can be derived
by using other results [21] forψkλs(r). Such is given by equations (154) of appendix B, wherein
also, for the isospin- 1

2 case, a check is made that these representations of the wavefunction
are identical. Note, however, that this equivalence of representations for arbitrary s could be
highly nontrivial to develop, since one would like to establish relations between the Whittaker
functions and the functions 1F2.

However, the scattering matrix now can be determined easily from the asymptotic
behaviour. With the details also given in appendix B, the result is

Snn′(λ, k, s) =
(
λ

2

)−2ik
�(n + ik)

�(n− ik)

�(n + 1 + ik)

�(n + 1 − ik)

�(s + 1 − ik)

�(s + 1 + ik)
i2nδn,−n (116)

where −s � n, n′ � s. Note that the λ and s dependence completely factorizes and that the
process is a helicity scattering, i.e. a charged particle entering the channel with the isospin
projection n is scattered to that with the isospin projection −n.
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Note also that result (116) gives the scattering matrix for both of our models. However,
we have to be a little bit careful. For our second model we have a one-dimensional scattering
problem on a matrix-valued Morse potential. Since in this case we have no transmitted wave,
equation (116) has to be interpreted as a matrix-valued reflection coefficent. The channel
indices are to be interpreted as those due to some internal degrees of freedom. (For the one
channel case, see, e.g. [1] in this respect.) For our first model we have a three-dimensional
scattering problem. Moreover, in this case we have no potential, the scattering problem is
purely geometrical. Hence, in order to develop a scattering theory and define a scattering
matrix some alternative approach is needed. Luckily, the method of Lax and Phillips [25]
can be applied precisely for such types of scattering problems. In particular, for the two-
dimensional geometrical scattering problem on the upper half plane the theory has already
been fully developed [26]. It has been shown that in this case our ‘naive’ definition of the
scattering matrix is precisely the one that has to be used in the Lax–Phillips sense. Of course,
our case is three-dimensional and also has some helicity degrees of freedom, so although a
generalization of the Lax–Phillips method and the rigorous justification of our definition of
the scattering matrix in principle can be done, but it is by no means a trivial task.

7. Motion on H/Γ in an SU (2) gauge field

In this section, it is shown how an even larger class of exactly solvable models may be obtained
by restricting the motion of a charged particle in the SU(2) magnetic field equation (20) from
H to a fundamental domain. That requires imposition of suitable boundary conditions on the
coupled channel wavefunction. The basic idea is to consider discrete subgroups� of SL(2,C)
and to form the spaces H/� by identifying the points on the boundary of certain fundamental
domains in H. The arising manifolds are three-manifolds with constant negative sectional
curvature. They are compact or non-compact (hence allowing scattering states) depending on
the choice of �. Some of these three-manifolds have been used in the context of quantum
chaos and cosmology [12, 13]. Those studies did not include a non-Abelian magnetic field.
However there has been an attempt [27] to incorporate an Abelian U(1) gauge field. Since
the mathematics of the spectral theory of the operator C1 on such manifolds is well known
[14] and has been applied [12, 13], only the first steps towards an analogous theory for the
operator C1 containing a non-Abelian gauge field will be outlined, though the correct boundary
conditions for the coupled channel wavefunction will be specified.

Representing the points on H with the quaternion

w ≡ z + jt = x + iy + jt where i2 = j2 = k2 = −1, ij = −ji = k (117)

and for an PSL(2,C) ∼ SL(2,C)/Z2 element, the fractional linear transformation
representing the left action of SL(2,C) on H can be written as

gw = (aw + b)(cw + d)−1 g ∈ ±
(
a b

c d

)
∈ SL(2,C). (118)

This transformation formula for the pair (z, t) is

g : (z, t) �→
(
(az + b)(cz + d) + act2

|cz + d|2 + |c|2t2 ,
t

|cz + d|2 + |c|2t2
)
. (119)

Let � be a discrete subgroup of PSL(2,C). When gauge fields are not present, the one-
component wavefunction must satisfy the boundary condition

ψ(gw) = ψ(w) g ∈ � w ∈ H. (120)
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Such functions are called automorphic functions with respect to �. When an SU(2) gauge
field is present with isospin of the gauge field being s, there are 2s + 1 vector-valued
wavefunctions, each having 2s + 1 components. To find the analogue of equation (120),
note that by construction our gauge field is the unique SL(2,C) invariant SU(2) gauge
field [15]. Thus under an SL(2,C) transformation of form (118), the one-form A remains
invariant up to a compensating SU(2) gauge transformation. The compensating local SU(2)
gauge transformation depends on the SL(2,C) transformation in question. Forming three-
manifolds H/� by gluing the boundaries of suitably chosen fundamental domains in H,
requires certain elements g of the discrete group �. Since non-Abelian gauge fields are to
exist on these domains, the compensating gauge transformations corresponding to these gluing
transformations of� need to be registered. A ramification is that there will be closed loops from
which, on encircling, the multicomponent wavefunctions acquire an SU(2) representation
element. This SU(2) matrix is precisely the compensating gauge transformation needed for
the identification in the particular isospin s representation.

To find this compensating gauge transformation, the simplest (2×2)-matrix representation
may be used. In this representation the one-form A and its gauge transform have the form

A = 1

2it

(
0 −dz
dz 0

)
A′ = U †AU − iU † dU (121)

where A′ is found by replacing the pair (z, t) in A with the SL(2,C) transformed quantities
(z′, t ′) by using equation (119). U(g; z, t) is the compensating gauge transformation to be
found. It is a straightforward calculation to show that U(g; z, t) is given by

U(g; z, t) = 1√
|cz + d|2 + |c|2t2

(
cz + d −tc
tc cz + d

)
. (122)

Then, to find the compensating gauge transformation for the general isospin s one can seek to
represent U(g; z, t) as

U(g; z, t) = eiα+S+ eiα3S3 eiα−S− (123)

where S± = 1
2σ± and S3 = 1

2σ3. In this way, the unknown quantities α± and α3 can be
expressed in terms of the known ones (a, b, c, d; z, t). A simple calculation shows that

α+ = itc

cz + d
α− = −itc

cz + d
e

i
2 α3 =

√
|cz + d|2 + |c|2t2

cz + d
. (124)

Using defined relations [28]

|sµ〉 =
√
(s − µ)!(s + µ)!

(2s)!

(S+)
s+µ

(s + µ)!
|s − s〉 =

√
(s − µ)!(s + µ)!

(2s)!

(S−)s−µ

(s − µ)!
|ss〉 (125)

the general explicit formula for the compensating gauge transformation is

Uµν(g;w) =
√
(s + µ)!(s + ν)!

(s − µ)!(s − ν)!
(−α+)

µ(α−)ν
s∑

�=−s

(s − �)!

(s + �)!(µ− �)!(ν − �)!
(1 + |α+|2)�

(126)

where the parameters α± depend on w and the group parameters are given by equation (124).
The boundary condition needed on three-manifolds of the form H/� when an SU(2)

gauge field of the form (121) is present, is

ψµ(gw) = Uµν(g;w)ψν(w) w ≡ (z, t) ∈ H g ∈ � ⊂ PSL(2,C) −s � µ, ν � s.

(127)
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Here Uµν(g;w) is given by equation (126). Note that on the boundary of H characterized by
the restriction t = 0 (it is just the one-point compactification of R2, i.e. S2, the two sphere)
this boundary condition has the diagonal form

ψµ(gw) = e−2iµarg(cz+d)ψµ(w) −s � µ � s. (128)

Hence the transformation formula (127) can be regarded as the extension of that used previously
[9] for the Abelian U(1) gauge field describing the constant magnetic field on the upper
half plane. The transform extends from R2 to H. However, this extension unlike that of
equation (128) mixes the different isospin components.

The nature and mathematical meaning of the boundary condition (127) is revealed on
recalling equation (122) for the isospin- 1

2 case, and noting that for the isospin-1 case

U(g; z, t) = 1

|cz + d|2 + |c|2t2


 (cz + d)2 −√

2ct (cz + d) c2t2√
2ct (cz + d) |cz + d|2 − |c|2t2 −√

2ct (cz + d)

c2t2
√

2ct (cz + d) (cz + d)2


 .

(129)

Introducing a new wavefunction,

φµ(z, t) ≡ t−2sψµ(z, t) where s = 1
2 , 1 (130)

facilitates this study, as then for isospin 1
2 ,

φ1/2(gw) = (cz + d)φ1/2(w)− ctφ−1/2(w)
(131)

φ−1/2(gw) = ctφ1/2(w) + (cz + d)φ−1/2(w).

Similarly, there is a simple form for the isospin-1 case. That contains only real-valued
polynomial coefficients of second order in ct , in cz + d and in their conjugates; a pattern
that survives for general s since the ‘trick’ of equation (130) always gives new wavefunctions
with a transformation formula containing 2s order polynomials in ct , in cz+ d and in their
conjugates. This structure is reminiscent of a well-known formula in the theory of automorphic
forms of degree 2s on the upper half plane U [29], i.e.

ϕ(gz) = (cz + d)2sϕ(z) z ∈ U g ∈ � ⊂ PSL(2,R). (132)

This encapsulates the correct boundary conditions on two-manifolds, i.e. Riemann-surfaces
U/�, when a constant magnetic field with quantized values B ≡ 2s exists. Exploiting
quaternions for s = 1

2 , equation (131) can also be cast in this form. Indeed, reintroducing the
quaternionw = x + iy + jt , and defining two-by-two matrices by

I ≡ −iσ3 J ≡ −iσ2 W = x1 + yI + tJ
(133)

C ≡ (Re c)1 + (Im c)I D ≡ (Re d)1 + (Im d)I

where 1 is the two-by-two identity matrix, equation (131) takes the form resembling the
quaternion analogue of (132) for s = 1

2 ,

φµ(gw) = (CW +D)µνφν(w) w ∈ H g ∈ γ ⊂ PSL(2,C). (134)

Note also that the matrix U(g,w) for arbitrary s satisfies the consistency (co-cycle) condition

U(g1g1, w) = U(g2, w)U(g1, g2w) g1, g2 ∈ � w ∈ H (135)

a condition which is also satisfied by the automorphy factor appearing in equation (132) in
analogy with the usual theory of modular forms [29].

In all, for different possible choices of �, a large class of exactly solvable models defined
on three-manifolds of the type H/� have been found. These models describe the propagation
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of a charged particle on these manifolds under the influence of a non-Abelian SU(2) gauge
field. Solutions of these models equate to finding solutions to the eigenvalue problems of
Casimir operators as given by equation (16), and which satisfy the boundary conditions of
equation (127). When no magnetic field is present in these models, it is well known [30] that,
for a suitably chosen class of � allowing scattering states, these solutions are given explicitly
by the Eisenstein series. In such cases, the asymptotic limit of the wavefunction and the
scattering matrix can be defined and calculated. However, fine details of the scattering matrix
depend on the number of theoretic properties of � [30]. When a non-Abelian magnetic-field
is present, however, these results need to be, and can be, generalized by using a suitable
generalization of the Eisenstein series. Herein, my intention was to derive the correct form
of the boundary condition. Further details of such solvable models will be given in a future
publication.

8. Conclusions and comments

Two exactly solvable models of multichannel scattering have been considered. The first
describes the non-relativistic scattering of a charged particle on the curved manifold H, the
Poincaré upper half space with constant negative sectional curvature under the influence of
an SU(2) gauge field. The second model considers one-dimensional potential scattering with
a matrix-valued interaction term that contains Morse-like potentials. These models have an
equivalence that is based on a coset space construction and on the fact that different sets of local
coordinates can be used for the coset. The associated coupled channel wavefunctions have been
constructed in two different ways. The first was based upon an explicit construction regarding
these wavefunctions as simultaneous eigenfunctions of the SL(2,C) Casimir operators. The
second method of construction originates from the observation that H is just the coset
SL(2,C)/SU(2) so that known results from the theory of harmonic analysis on coset spaces
can be used. Using these representations, the explicit form of the scattering matrix valid for
an arbitrary isospin s has been ascertained.

The exact solutions presented herein may have interesting applications in cosmology,
since the change of coordinates

X1 = x

t
X2 = y

t
X3 = x2 + y2 + t2 − 1

2t
X4 = x2 + y2 + t2 + 1

2t
(136)

establishes a homeomorphism between the upper half space H and the upper sheet of the
double-sheeted hyperboloid defined by (X1)

2 + (X2)
2 + (X3)

2 − (X4)
2 = −1 and X4 � 1.

Expressing the vector (X,X4) in terms of polar coordinates as X = sinhρn andX4 = coshρ,
with n ≡ (n1, n2, n3) = (sin θ cosϕ, sin θ sin ϕ, cos θ) metric (2) becomes

ds2 = dρ2 + sinh2ρ(dθ2 + sin2θ dϕ2). (137)

Then as the cosmological line elements comply with the principles of isotropy and homogeneity
(Robertson–Walker geometries) it can be written in the form

dσ 2 = −c2 dτ 2 + R(τ) ds2 (138)

where ds2 is the line element of a three-dimensional space of constant curvature, assumed
to be negative. Also R(τ) is the expansion factor which controls the Gaussian curvature of
the space-like slices τ = const. (Here x0 = τ corresponds to the time variable and is not to
be confused with x3 = t .) So, while for such models ds2 is usually written in the form of
equation (137), these space-like slices can be modelled by H as well using metric (2).

Likewise, the problem of Maxwell’s equations on a cosmological background of the
form R(+) × H/� has been considered before [27]. For this, the space-like slices are
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topologically nontrivial three-manifolds, and to obtain solutions of the corresponding U(1)
gauge theory on such spaces the gauge-potentials need to be periodized with respect to the
gluing transformations of �. This was done using the vector-field property of Aµ. However,
besides being a vector Aµ is also a gauge field, hence a periodization up to an U(1) gauge
transformation would have been more adequate. In this respect the non-Abelian gauge field
described herein behaves naturally. Indeed, the gauge field (17) is the unique SL(2,C)
invariant SU(2)-valued gauge field on H [31]. Moreover, the corresponding two-form F also
satisfies the Yang–Mills equations on H. Since an invariant gauge field is invariant up to a
compensating SU(2) gauge transformation, these objects are just the natural ones on spaces
of the form H/�, with � ⊂ SL(2,C). Hence in these cosmological models instead of using
an U(1) gauge field, it seems more natural to consider an SU(2) one.

As far as the problem of finding possible solutions of the SU(2) gauge theory on
R(+)×H/� spaces is concerned, note that the static choiceAj = (A0,A(x)) = (0,A(x))with
j = 0, 1, 2, 3, also is a solution of the Yang–Mills equations on the R(+)×H Robertson–Walker
spaces. Since A ≡ Aj dxj is still an SL(2,C) invariant gauge field (the time-independent
compensating gauge transformations leave theA0 = 0 gauge invariant), this development also
gives a solution on R(+) × H/�.

Solutions of the Klein–Gordon wave equation in the static field A can also be considered
in the spirit of [13], i.e.(
− c2

R3(τ )

(
∂

∂τ
R3(τ )

∂

∂τ

)
+

1

R2(τ )
�(A)−

(mc
h̄

)2
− ξR̂

)
	(τ, x, y, t) = 0 (139)

where �(A) is just the Laplace–Beltrami operator in the gauge field (17), R̂ is the curvature
scalar of the metric (138) and ξ is a dimensionless parameter that couples 	 to the curvature
scalar. Separation of variables in the form 	(τ, x) = χ(τ)ψ(x) with x ≡ (x, y, t) gives the
equation (�(A)+λ)ψ(x) = 0, with λ being the separation parameter. The spectral problem of
this equation on H is precisely that solved herein. The corresponding equation for χ(τ) can be
found in [13]. It would be interesting to attempt to solve this equation on R(+) × H/� as well.
To do so, solutionsψ(x) satisfying the more general boundary conditions (127) must be found.
Note that these are the generalizations of the � periodic boundary condition used before [13]
and from which λ0, the eigenvalue corresponding to the only square integrable bound state,
was found to be connected with the Hausdorff dimension of the limit set of the group �. This
limit set forms a quasi-self-similar curve on the boundary of H and the class of trajectories
with end points lying in this limit set is chaotic. In this picture this fractal-structured limit set
provides the link between the classical chaos and the existence of a localized quantum state
for the Klein–Gordon field. It is important to investigate how these results (e.g. the number of
localized states as a function of the isospin s) are modified when a non-Abelian gauge field is
also present.

In closing, note that the gauge field of equation (17) is just the pull-back of the so-called
H-connection with respect to the section, equation (146), a connection that can be defined on
any principal bundle G over the cosetG/H . Moreover, onG/H there is a natural Riemannian
metric coming from the Cartan–Killing metric of the semi-simple Lie algebra g of G. For the
special case at hand withG/H � SL(2,C)/SU(2) this metric is just that given by equation (2).
On a Riemannian manifold with a metric, the (so-called) spin connection also can be defined.
This connection is needed for a consistent implementation of spinors on a curved space,
which enables a correct definition of the Dirac operator D on the manifold. Since the gamma
matrices in three dimensions are just the two-by-two Pauli matrices, some connection between
the Dirac operator for a mass zero fermion on the curved space H and the first-order differential
operator C2 of equation (22) for the isospin- 1

2 case can be expected. Indeed, a straightforward
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calculation shows that the two connections for H, the H-connection for isospin 1
2 and the

spin connection are identical. Hence 2C2 = D which implies that the eigenfunctions
of the relativistic scattering problem of a free massless fermion have the same form,
equations (80), (81), as the eigenfunctions of the non-relativistic problem of a spinless particle
in a non-Abelian gauge field with isospin 1

2 . This identification of the spin and H-connections
is not a coincidence. According to a theorem [20], the two connections coincide if G/H is a
symmetric space, a condition which holds in our case.
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Appendix A

The construction of a matrix-valued differential realization of the semi-simple Lie-algebra g is
based on a particular choice of local section of the principal bundle G overG/H with fibre H.
This is a mapping L : U → G, x �→ L(x) where x ∈ U is a local coordinate in an open
neighbourhood of G/H . The choice of this section is not unique. For an arbitrary function
h : U → H , the new section L′(x) ≡ L(x)h(x) gives rise to a different realization of g.
However, since the generators constructed are gauge covariant, the new realization based on
L′ is gauge equivalent to that constructed from L.

Decompose the Lie-algebra as

g = h ⊕ m (140)

where h is the sub-algebra corresponding to H and m is the orthogonal complement of h
with respect to the Cartan–Killing metric. Then on splitting the generators of g into two
corresponding subsets Ja, a = 1, 2, . . . , dim h and Kα, α = 1, 2, . . . , dim m, commutation
relations in this base are

[Ja, Jb] = iCcabJc [Ja,Kα] = iCβaαKβ [Kα,Kβ ] = iCaαβJa (141)

where it is assumed that G/H is a symmetric space. So no K terms appear in the third set of
commutation relations, i.e. Cγαβ = 0. Note that the construction is valid for the non-symmetric
space case as well.

Next, for a particular choice of L(x), define the quantities DJ
I (x), I, J = 1, 2 . . . ,

dim g, Aaµ(x)Ja dxµ, Eαµ(x)Kα dxµ, µ = 1, 2, . . . , dim m = dimG/H for which

L−1(x)JaL(x) = Db
a(x)Jb + Dα

a (x)Kα L−1(x)KαL(x) = Db
α(x)Jb + Dβ

α (x)Kβ (142)

and

iL−1(x) dL(x) = Aaµ(x)Ja dxµ + Eαµ(x)Kα dxµ. (143)

On choosing an irreducible unitary matrix representation D for H, the generators of the induced
representation of G induced by D can be constructed [15]. They are matrix-valued differential
operators (covariant Lie-derivatives) of the form

Ga = −iDα
a (x)E

µ
α (x)

(
∂µ − iAbµD(Jb)

)
+ Db

a(x)D(Jb) (144)
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and

Fα = −iDβ
α (x)E

µ

β (x)
(
∂µ − iAbµD(Jb)

)
+ Db

α(x)D(Jb) (145)

where D(Ja) are the generators of the sub-algebra h in the inducing representation D and
Eµα (x) is the inverse matrix of Eαµ(x). It can be shown that the generators Ga and Fα
satisfy the commutation relations (141), hence giving a realization of the Lie-algebra g.
For this case, G = SL(2,C),H = SU(2) and G/H � H. The ranges of indices are
I, J = 1, . . . , 6, a, b = 1, 2, 3, α, β,µ = 1, 2, 3. The inducing representation is the usual
(2s + 1)-dimensional one with whichD(Ja) ≡ Sa . Choosing the section as

L(x, y, t) =
(√

t
x−iy√
t

0 1√
t

)
∈ SL(2,C) (146)

the SL(2,C) generators in the (non-unitary) 2 × 2 defining representation as Ja = 1
2σa, and

Kα = i
2σα , a straightforward calculation shows that

Aaµ(x)Ja dxµ = 1

t
(J1 dy − J2 dx) Eαµ(x) = 1

t
δαµ Eµα (x) = tδµα . (147)

Then the quantities DJ
I (x) can be expressed as

Db
a(x) = Dβ

α (x) =




1−x2+y2+t2

2t − xy

t
−x

− xy

t

1+x2−y2+t2

2t −y
x
t

y

t
1


 (148)

and

Da
α(x) = −Dα

a (x) =




xy

t

1−x2+y2−t2
2t y

− 1+x2−y2−t2
2t − xy

t
−x

− y

t
x
t

0


 . (149)

Collecting everything together and substituting into equations (144) and (145) determines the
realization, equations (10) and (11), used in section 2.

Appendix B

Consider the wavefunction given in the paper of Delbourgo et al [21], i.e.

ψ
kj0
λsn(r) = ij0+n er

Nk
λs

2

∫ 1

−1
d(cos θ)dsnj0

(θ)Jn−j0

(
λ e−r tan

θ

2

)[
ercos2 θ

2

]−ik−1

(150)

where

Nk
λs =

√
−(2s + 1)λ�(−s − ik)�(s + 1 − ik) cosπ(ik + λ/2)

(
λ

2

)ik

. (151)

Changing the variables to u = cos θ and using [22]

dsnj0
(u) =

∑
j

(−1)j+n−j0�sj,nj0[(1 + u)/2]s−j+(j0−n)/2[(1 − u)/2]j−(j0−n)/2 (152)

where

�sj,nj0 =
√
(s + n)!(s − n)!(s + j0)!(s − j0)!

(s − n− j)!(s + j0 − j)!(j + n− j0)!j !
(153)
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and with the new variable w = 1−u
1+u , this wavefunction becomes

ψ
kj0
λsn(t) = ij0+nt ik

∞∑
j=0

(−1)j+n−j0�sj,nj0

∫ ∞

0
dw

wj+(n−j0)/2

(1 +w)s+1−ik
Jn−j0(λt

√
w). (154)

As usual, the sum over j is limited to values for which all arguments of factorials are not
negative.

Next, after the substitution w = z2 the result [23], page 710,

2
∫ ∞

0
dy

y�−1

(1 + y2)µ+1
Jν(ay) =

(a
2

)ν �((� + ν)/2)�(µ + 1 − (� + ν)/2)

�(µ + 1)�(ν + 1) 1F2

×
(
(� + ν)

2
; (� + ν)

2
−µ, ν + 1; a

2

4

)
+
(a

2

)2µ+2−� �((� +µ)/2 −µ− 1)

�(µ+2 + (ν−�)/2) 1F2

×
(
µ + 1;µ + 2 +

(ν − �)

2
, µ + 2 − (ν + �)

2
,
a2

4

)
(155)

for which a > 0 and Re ν < Re � < 2Reµ + 7/2 is of use. Since the wavefunction is
symmetric with respect to the interchange of the indices n and j0, it is sufficient to restrict
attention to the case n � j0. Thus a = λt > 0, � = 2j+n− j0 +2, µ = s− ik, ν = n−j0 � 0,
hence −Re ν < Re �. Moreover, since this integral is included in a sum for which the nonzero
terms are governed by the non-vanishing of�, the constraints s−n−j � 0 and s +j0 −j � 0
need to be taken into account. They ensure that there are no negative arguments in the
factorials. As all such conditions are satisfied in this development, the integral formula can be
used in equation (154). First, only the asymptotic form of this formula, i.e. the limit t → 0 is
required. In this limit the hypergeometric functions equate to 1, and the overall normalization
is irrelevant. Collecting everything

lim
t→0

ψ
kj0
λsn(t) ∼ in+j0

(
λ

2

)ik

t ik


 ∞∑
j=0

(−1)j+n−j0�sj,nj0

(
λt

2

)n−j0

× �(j + n− j0 + 1)�(s − j − ik + j0 − n)

�(s + 1 − ik)�(n− j0 + 1)


 + in+j0

(
λ

2

)−ik

t−ik

×

 ∞∑
j=0

(−1)j+n−j0�sj,nj0

(
λt

2

)2s−2j−(n−j0) �(j − s + ik + n− j0)

�(s + 1 − ik − j)


 .

(156)

Since n � j0, tn−j0 = e−r(n−j0) vanishes exponentially unless n = j0. Hence to get the
correct asymptotic behaviour with the first term, n must be equal to j0. In the second term an
exponential decay occurs unless j = s − (n− j0)/2. With the constraints s − n− j � 0 and
s + j0 − j � 0 for� �= 0, these enforce the constraint n = −j0. Thus there is the asymptotic
limit

lim
r→∞ψ

kj0
λns(r) ∼

(
λ

2

)ik

i2m


 ∞∑
j=0

(−1)j�sj,nnB(j + 1, s − j − ik)


 e−ikr δn,j0

+

(
λ

2

)−ik [
(−1)s+n�ss−n,n−n

�(n + ik)

�(n + 1 − ik)

]
eikr δn,−j0 (157)
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where B(a, b) = �(a)�(b)

�(a+b) . Then as �ss−n,n−n = 1 and

B(j + 1, s − j − ik) = �(j + 1)�(s − j − ik)

�(1 + s − ik)
=
∫ ∞

0

tj

(1 + t)s+1−ik dt (158)

the asymptotic limit is

lim
r→∞ψ

kj0
λns(r)∼ i2n

(
λ

2

)ik

∫ ∞

0
dt (1 + t)−(s+1 − ik)

∞∑
j=0

(−s− n)j (−s + n)j
(1)j

(−t)j
j !


 δn,j0 e−ikr

+

(
λ

2

)−ik

(−1)s+n
�(n + ik)

�(n + 1 − ik)
δn,−j0 eikr . (159)

To calculate the scattering matrix from this, the integral of the (finite) sum must be done. It
can be noted that the sum is precisely the hypergeometric function 2F1(−s−n,−s +n; 1; −t).
Hence the integral to be evaluated is

I (s, n, k) ≡
∫ ∞

0
dt(1 + t)−(s+1−ik)

2F1(−s − n,−s + n; 1; −t) (160)

and using [23] (p 854), namely,∫ ∞

0
dt tγ−1(z + t)−σ 2F1(α, β; γ ; −t) = �(γ )�(α − γ + σ)�(β − γ + σ)

�(σ)�(α + β − γ + σ)
2F1

× (α − γ + σ, β − γ + σ ; α + β − γ + σ ; 1 − z) (161)

where Re γ > 0,Re(α− γ + σ) > 0,Re(β − γ + σ) > 0 and |arg z| < π , with γ = 1, z = 1,
the integral can be expressed entirely in terms of gamma functions, i.e.

I (s, n, k) = �(−n− ik)�(n− ik)

�(s + 1 − ik)�(−s − ik)
= (−1)s+n

�(n− ik)�(s + 1 + ik)

�(n + 1 + ik)�(s + 1 − ik)
. (162)

Note that the reflection formula, �(z)�(1 − z) = π
sinπz , has been used as well. As a result, the

scattering matrix is given by

Snn′(λ, k, s) =
(
λ

2

)−2ik
�(n + ik)

�(n− ik)

�(n + 1 + ik)

�(n + 1 − ik)

�(s + 1 − ik)

�(s + 1 + ik)
i2nδn,−n (163)

where −s � n, n′ � s.
Finally, in this appendix, I prove for the spin- 1

2 case that the representation (52) of the
coupled channel wavefunction equates to that used in section 5. For spin 1

2 because of
symmetric structure, only three cases n = j0 = 1

2 , n = j0 = − 1
2 and n = −j0 = 1

2 remain
operative. Using equations (153) and (154), the wavefunction when multiplied by

√
q is

√
qψj0

n (q) = Nk
λs

in+j0(−1)n−j0

2�(3/2 − ik)

(
λ

2

)−ik

(Q(n− j0 + ik) +Q(1 − n + j0 − ik)) (164)

where

Q(x) ≡ 2−2xq1/2+x
0F1(; x + 1/2; (q/4)2)�(1/2 − x) (165)

and q = 2λ e−r , and the fact that 1F2(c; a+ 1/2, c; z) = 0F1(; a+ 1/2; z) has been used. Then
one can use the relation [24]

0F1(; a + 1/2; (q/4)2) = e−q/2
1F1(a; 2a; q) (166)

and equations (13.4.4) and (13.4.5) on page 506 of [17], namely,
q

2a − 1 1F1(a; 2a; q) = 1F1(a; 2a − 1; q)− 1F1(a − 1; 2a − 1; q)
(167)

21F1(a; 2a; q)= 1F1(a; 2a + 1; q) + 1F1(a + 1; 2a + 1; q).
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For n = j0, the quantitiesQ(ik) andQ(1− ik) are required, and for n = −j0 = 1
2 it isQ(−ik)

and Q(1 + ik). Hence only the n = j0 case needs to be resolved since the other follows on
substitution of ik by −ik. Using equations (74) and (167) it follows that

Q(ik) = 1
2 2−2ik�(1/2 − ik)

[
M− 1

2 ,ik
(q) +M 1

2 ,ik
(q)
]

(168)
Q(1 − ik) = 1

2 22ik�(1/2 + ik)
[
M− 1

2 ,−ik(q)−M 1
2 ,−ik(q)

]
.

Finally, using the duplication formula

2±2ik�(1/2 ± ik) =
√

4π
�(±2ik)

�(±ik)
(169)

one can find

ψk
λ 1

2
(q) = N k

λ 1
2
q−1/2Rk

λ 1
2
(q) (170)

where R(q) is given in the text and the normalization factor is

N k

λ 1
2

≡ −
√(

λπ cosπ(λ/2 + ik)

1/2 + 2k2

)
. (171)

Appendix C

In this appendix I outline how one can find the eigenvectors of S2 = 1
2i (S+ − S−). Recall that

S±|sµ〉 =
√
(s ± µ + 1)(s ∓ µ)|sµ± 1〉 (172)

and write the eigenvalue problem in the form

S2um(µ) = (s −m)um(µ) m = 0, 1, . . . , 2s − s � µ � s. (173)

With normalized eigenvectors in the |sµ〉 base defined by um(µ) = NsmQm(µ),Nsm is a
normalization factor, and with Qm(µ) having the form

Qm(µ) = iµ
√
ω(µ)Pm(µ) ω−1(µ) = (s − µ)!(s + µ)! (174)

one can show that Pm(µ) satisfies the equation

(s − µ)Pm(µ + 1) + (s + µ)Pm(µ− 1) = 2(s −m)Pm(µ). (175)

It is known [18] (see p 349) that the Krawtchouk polynomials satisfy the recursion relation

p(N − x)Ks(x + 1;p;N) + (1 − p)xKs(x − 1;p;N) = (p(N − 2x) + x − s)Ks(x;p;N)
(176)

which is precisely equation (175) with N = 2s, x = s + µ, s = m and p = 1
2 . Hence I

conclude that

Qm(µ) = iµ√
(s − µ)!(s + µ)!

Km

(
s + µ; 1

2
; 2s

)
. (177)

To find the normalization factor formula (9) in [18], page 348,

N∑
x=0

CxNp
x(1 − p)N−xKs(x;p;N)Kq(x;p;N) =

(
1 − p

p

)s (
CsN
)−1

δsq CxN ≡
(
N

x

)

(178)
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is useful when seeking a relation
∑s

µ=−s um(µ)um′(µ) = δmm′ . It is straightforward to find
then that the normalized eigenvectors of S2 are

uµα = iµ2−s(2s)!√
(s + µ)!(s − µ)!(s + α)!(s − α)!

Ks+α

(
s + µ; 1

2
; 2s

)
(179)

where the Krawtchouk polynomials can be generated by [19]

Ks+α

(
s + µ; 1

2
; 2s

)
= (s + µ)!(s − µ)!(s − α)!

(2s)!
�s+α


 1

(s + µ)!(s − µ)!

s+α−1∏
j=0

(s + µ− j)




(180)

with the definition

�F(µ) ≡ F(µ + 1)− F(µ). (181)

Note also that an instructive notation, uµα ≡ us+α(µ), has been used. That is, here α is
that index used in m = s + α. uµα is a (2s + 1)× (2s + 1)-matrix with columns labelled by
−s � α � s corresponding to the different normalized eigenvectors linked to the eigenvalueα.
The subscript µ labels the different components of the eigenvector in question.
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